Comparative Study and Implementation of Multi-objective Pso Algorithm Using Different Inertia Weight Techniques for Optimal Control of a Cstr Process
نویسندگان
چکیده
In this paper, different Inertia weight techniques in Particle Swarm Optimization algorithm (PSO) have been compared to search for the optimal PID controller gains for a Continuous Stirred Tank Reactor (CSTR) process. The optimization problem considered is highly nonlinear, complex with multiple objectives, wide operating range and constraints. The efficiency of PSO algorithm lies in the suitable selection of Inertia weight (w) to provide a balance between global exploration and local exploitation which in turn ensures the convergence behaviour of particles. The standard PSO algorithm has premature and local convergence phenomenon when solving complex optimization problem. The proposed approach is efficient in achieving stable convergence characteristics, good computational efficiency and capability to avoid from local optima. In the present study an attempt has been made to review some of the inertia weight techniques. Simulation results demonstrate that Adaptive Inertia weight Particle Swarm Optimization (AWPSO) technique is superior to all PSOs considered with various Inertia weight methods for both single objective and multi-objective functions.
منابع مشابه
Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملDesigning an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کاملVibration Optimization of Fiber-Metal Laminated Composite Shallow Shell Panels Using an Adaptive PSO Algorithm
The paper illustrates the application of a combined adaptive particle swarm optimization (A-PSO) algorithm and the finite strip method (FSM) to the lay-up optimization of symmetrically fiber-metal laminated (FML) composite shallow shell panels for maximizing the fundamental frequency. To improve the speed of the optimization process, adaptive inertia weight was used in the particle swarm optimiz...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015